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Abstract  

Several conventional techniques including standard amplitude distributions like uniform, 

cosine on pedestal, circular, parabolic, triangular and trapezoidal are reported in literature for 

pattern synthesis over the last few decades. Taylor has reported synthesis of sum pattern from a 

line source. None of the patterns reported by the above technique are optimal in terms of 

sidelobes and beamwidth. However, it is possible to optimize the pattern using state of the art 

algorithms. In this paper, Accelerated Particle Swarm Optimization algorithm is applied to 

optimize the sum patterns. The realized patterns are compared with those of Taylor. It is evident 

from the results that patterns obtained from Accelerated Particle Swarm Optimization are better 

than those of Taylor in terms of sidelobes and beamwidth. 
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1. Introduction 

Pattern synthesis of array antennas is one of the most important problems for which attention 

is to be paid by antenna engineers and scientists. It is inverse process of array analysis. In 

analysis, the generation of radiation patterns for a given distribution and array system. On the 

other hand, in synthesis, pattern characteristics are specified and array is to be designed. It 

involves the determination of excitation amplitude, phase, spacing of elements, and the selection 

of radiating elements in the array. However, design methodology for the above parameters is 

cumbersome and complex. In view of this, focus is made to synthesize amplitude distributions of 

excitation while keeping all other parameters constant and pre specified depending on the array 

application. Although several pattern shapes exist for each application, narrow beam are chosen 

for the design. 

Array antennas have a number of applications in all types of communication, radio 

transmitter, navigation, radars of all types, radiometers, electromagnetic heating, direction 

finding, ground mapping, remote sensing, and electromagnetic energy therapy etc. 

Although, array antennas with their high directive gain and simplicity, are capable of 

generating well defined radiation pattern shapes useful for multiple application. They are useful 

as temperature sensor for measuring temperature of teleobjects or planets and stars. It is done 

from knowledge of signal to noise ratio. 

The array antennas are capable of producing desired shapes of the far-field of 

electromagnetic wave like electronic circuits produce any shape of signal waveform. The pattern 

synthesis is applied to a continuous line source as well as discrete linear array of radiators.  

Continuous line source is an antenna which has a long, narrow and straight geometry. Its 

directivity depends on the variations in field or current strength with respect to longitudinal 

coordinates. That is, the currents or fields are continuous functions of longitudinal coordinate. As 

such, the expressions obtained for far-field of continuous line source are not applicable directly to 

the arrays of discrete radiators. Taylor [1] reported design of line-source antennas for narrow 

beamwidth and low sidelobes. This method is characterized by the desired sidelobe ratio, and the 

boundary of the region of uniform sidelobes n , an integer. Using these two parameters, the 

pattern, the distribution function and other relevant data are computed. The beamwidth of the 

pattern is a function of the sidelobe ratio. Taylor presented the variation of beamwidth as a 

function of sidelobe ratio for ideal pattern characteristics, along with the distribution function. 

The resultant patterns, for different sidelobe ratios, the amplitude distribution of continuous line 

sources of different types are designed. Introducing these distributions, the radiation patterns are 
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evaluated. The distribution so designed is found to be tapered with small pedestals towards the 

ends of the line source. The radiation pattern consists of one main beam and a set of sidelobes 

with equal height depending on n   and exponentially decaying sidelobes. If 6n , there exists 

 1n  number of sidelobes of equal height [2-9]. 

On the other hand, Particle Swarm Optimization (PSO) which is developed by Kennedy and 

Eberhart in 1995 [10] is based on swarm behaviour in nature such as fish and bird schooling [11]. 

This optimization involves the use of swarm intelligence. It is applicable to every problem of 

optimization. In fact, there are more than 24 variants of Particle Swarm Optimization [12-22]. 

The swarm intelligence is used even in ant colony, and firefly algorithms. 

The trajectories of the individual particles are adjusted in searching the space of an objective 

function. 

Particle Swarm Optimization is characterized by the following:- 

 The positional vectors in a quasi – stochastic manner form the piecewise paths. 

 Particle movement has stochastic and deterministic components. 

 Each particle moves towards the location of current global best *g  and its own best 

location  t
i

*
x  in history. It also has tendency to move randomly. 

 If the new location is better than the previous one, it is taken as the best i . 

 The current best for all particles n  is considered in all iterations. 

 Iterations are undertaken till the global best is obtained. 

It is evident that in Particle Swarm Optimization, current global best and individual best are 

taken into account. In order to improve the algorithm, an attempt is made to accelerate the 

convergence of the algorithm. In this direction, algorithm is developed using only the global best. 

The resultant algorithm is known as Accelerated Particle Swarm Optimization (APSO). It is 

developed by Xin – She Yang in 2008 [22]. 

 

2. Formulation 

2.1 Taylor’s method of array design 

Taylor [1] considers the line source concept and defined the space factor using Fourier – 

Transform relationship. The expression from radiation pattern is given by 
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Here  

n   an integer and it divides sidelobe structure into uniform and non-uniform. It gives the 

number of sidelobes of equal level.  

6n  means  1n  sidelobes of equal height exists.  




sin
2L

u   

L2  length of line source 

 angle of observer. It is measured from broadside, A  is defined in such way that sidelobe 

ratio is obtained from Acos  . 
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The amplitude distribution is obtained from the desired radiation pattern from the following 

relation, 

   




1

1

dxexAuE jux           (3) 

Applying the steps given by Taylor, we get the relation for  xA . That is, 

      xnnEExnaaxA
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n  cos20cos2
11
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




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Here    0nE  for nn  . 

 

2.2 Accelerated Particle Swarm Optimization 

The Particle Swarm Optimization depends on the current global best *g  and also the 

individual best  t
i

*
x . However, Accelerated Particle Swarm Optimization depends on only the 

global best *g  [22-30]. 
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The velocity vector is given by the following formula [22] 

    t

i

t

i

t

i bra **1 5.0 xgvv          (5) 

Here r   random variable. It varies from 0 to 1. 

If  5.0ra  is replaced by 
tr  , Eq. (5) becomes 
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tr  can be selected from Gaussian distribution. The subsequent position is given by 
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As reported by Xin-She Yang et.al. [25] 

7.0~1.0

,4.0~1.0





b

a
           (9) 

The initial values can be 2.0a  and 5.0b . Both a  and b  are independent of ix  and also 

search domain. 

Compared to Particle Swarm Optimization, Accelerated Particle Swarm Optimization has 

global convergence property. As a result, it is possible to reduce number of iterations. As such, 

we can have 
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2.3 Array Design using Accelerated Particle Swarm Optimization 

A typical uniform linear array is shown in Fig.1. 

 

Fig.1. Geometry of Linear Array with equal spacing. 
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Considering a linear array of N  isotropic antennas, antenna elements are equally spaced at 

distance d  apart from each other along the x  axis. The free space far-field pattern  uE  is given 

by [9]. 

      dunknAuE
N

n

5.0cos2
1

 


        (11) 

Here,  

k  wave number


2  

 wave length  

 angle of observer 

sinu   

 nA  excitation of the nth element on either side of the array, array being symmetric 

d  element spacing 

Normalized radiation in dB is given by: 

 
 

  












max

10log20
uE

uE
uE          (12) 

In the design of array, amplitude distribution is considered to be optimized keeping phase 

and space parameters constant, for a specified sidelobe level,  nA  is computed for 
2


d  and 

excitation phase = 0. 

   dodo LSLLLSLLwFSLLFSLLwFunctionFitness  21     (13) 

      0,115.021  uuandwwfor  

Here  

 oFSLL  First Sidelobe level obtained 

 dFSLL  First Sidelobe level desired = -40dB 

 oLSLL  Last Sidelobe level obtained 

 dLSLL  Last Sidelobe level desired = -55dB 

1w  and 2w  are weighting factors which decide the relative preference given to each term in 

Eq. (13) and should be chosen such that 1
2

1


i

iw . 
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3. Results and Discussion 

From the Eq.(1) to Eq.(4),  nA  is computed using Taylor’s method. At the same time 

from Eq.(5) to Eq.(13), it is also evaluated using Accelerated Particle Swarm Optimization. The 

results on  nA  are compared in Figs. 2, 4, 6, 8, & 10. Introducing  nA  for  uE , patterns are 

computed and they are presented in Tables.1-5 and in Figs.2-11.  

The results of both small and large are presented. The results on Sidelobe level and 

Beamwidth are also presented in Tables.6-9. 

From results presented in Tables.1-5 it is evident that the amplitude distribution is more 

tapered with Accelerated Particle Swarm Optimization than that of Taylor. 

The realized patterns presented in Figs.3,5,7,9,11 reveal that the patterns have low sidelobe 

levels obtained with Accelerated Particle Swarm Optimization than those of Taylor.  

 

TABLE.1. – Optimized element amplitude weights for 20N  

n  

Element 

Number 

 nA  

Taylor method 

with 6n  

 nA  

Accelerated Particle  

Swarm Optimization 

1 & 20 0.1147 0.0515 

2 & 19 0.1681 0.1176 

3 & 18 0.2620 0.2039 

4 & 17 0.3801 0.3185 

5 & 16 0.5108 0.4525 

6 & 15 0.6449 0.5968 

7 & 14 0.7718 0.7376 

8 & 13 0.8798 0.8604 

9 & 12 0.9585 0.9514 

10 & 11 1.0000 1.0000 
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TABLE.2. – Optimized element amplitude weights for 40N  

n  

Element 

Number 

 nA  

Taylor method 

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

n  

Element 

Number 

 nA  

Taylor method 

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

1 & 40 0.1090 0.0656 11 & 30 0.6091 0.5858 

2 & 39 0.1229 0.1008 12 & 29 0.6750 0.6549 

3 & 38 0.1497 0.1239 13 & 28 0.7385 0.7222 

4 & 37 0.1877 0.1648 14 & 27 0.7979 0.7858 

5 & 36 0.2347 0.2090 15 & 26 0.8518 0.8405 

6 & 35 0.2886 0.2622 16 & 25 0.8991 0.8911 

7 & 34 0.3476 0.3198 17 & 24 0.9383 0.9327 

8 & 33 0.4103 0.3824 18 & 23 0.9687 0.9661 

9 & 32 0.4755 0.4487 19 & 22 0.9895 0.9871 

10 & 31 0.5422 0.5173 20 & 21 1.0000 1.0000 

 

 

TABLE 3 – Optimized element amplitude weights for 60N  

n  

Element 

Number 

 nA  

Taylor method  

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

n  

Element 

Number 

 nA  

Taylor method  

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

1 & 60 0.1079 0.0848 16 & 45 0.5976 0.5927 

2 & 59 0.1142 0.1134 17 & 44 0.6418 0.6329 

3 & 58 0.1264 0.1154 18 & 43 0.6853 0.6798 

4 & 57 0.1443 0.1324 19 & 42 0.7276 0.7218 

5 & 56 0.1673 0.1574 20 & 41 0.7682 0.7631 

6 & 55 0.1948 0.1829 21 & 40 0.8067 0.8053 

7 & 54 0.2262 0.2200 22 & 39 0.8427 0.8379 

8 & 53 0.2607 0.2521 23 & 38 0.8757 0.8732 

9 & 52 0.2979 0.2879 24 & 37 0.9055 0.9053 

10 & 51 0.3373 0.3272 25 & 36 0.9317 0.9320 

11 & 50 0.3783 0.3691 26 & 35 0.9540 0.9526 

12 & 49 0.4208 0.4116 27 & 34 0.9722 0.9723 

13 & 48 0.4642 0.4547 28 & 33 0.9860 0.9873 

14 & 47 0.5084 0.4989 29 & 32 0.9953 0.9976 

15 & 46 0.5530 0.5435 30 & 31 1.0000 1.0000 
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TABLE 4 – Optimized element amplitude weights for 80N  

n  

Element 

Number 

 nA  

Taylor method 

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

n  

Element 

Number 

 nA  

Taylor method 

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

1 & 80 0.1076 0.0891 21 & 60 0.5919 0.5865 

2 & 79 0.1111 0.1079 22 & 59 0.6251 0.6243 

3 & 78 0.1181 0.1167 23 & 58 0.6581 0.6484 

4 & 77 0.1283 0.1282 24 & 57 0.6905 0.6827 

5 & 76 0.1418 0.1355 25 & 56 0.7222 0.7197 

6 & 75 0.1581 0.1526 26 & 55 0.7530 0.7492 

7 & 74 0.1771 0.1690 27 & 54 0.7827 0.7692 

8 & 73 0.1985 0.1910 28 & 53 0.8111 0.8013 

9 & 72 0.2220 0.2182 29 & 52 0.8381 0.8398 

10 & 71 0.2474 0.2419 30 & 51 0.8635 0.8657 

11 & 70 0.2743 0.2723 31 & 50 0.8871 0.8862 

12 & 69 0.3027 0.2895 32 & 49 0.9088 0.8977 

13 & 68 0.3322 0.3216 33 & 48 0.9284 0.9175 

14 & 67 0.3627 0.3706 34 & 47 0.9459 0.9384 

15 & 66 0.3940 0.3984 35 & 46 0.9611 0.9553 

16 & 65 0.4260 0.4106 36 & 45 0.9739 0.9773 

17 & 64 0.4586 0.4416 37 & 44 0.9843 0.9893 

18 & 63 0.4916 0.4863 38 & 43 0.9921 0.9847 

19 & 62 0.5249 0.5236 39 & 42 0.9974 0.9837 

20 & 61 0.5584 0.5513 40 & 41 1.0000 1.0000 
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TABLE 5 – Optimized element amplitude weights for 100N  

n  

Element 

Number 

 nA  

Taylor method  

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

n  

Element 

Number 

 nA  

Taylor method  

with 6n  

 nA  

Accelerated 

Particle Swarm 

Optimization 

1 & 100 0.1074 0.0950 26 & 75 0.5884 0.5941 

2 & 99 0.1097 0.1169 27 & 74 0.6151 0.6164 

3 & 98 0.1141 0.1217 28 & 73 0.6416 0.6330 

4 & 97 0.1208 0.1235 29 & 72 0.6678 0.6700 

5 & 96 0.1295 0.1375 30 & 71 0.6936 0.6872 

6 & 95 0.1403 0.1299 31 & 70 0.7190 0.7050 

7 & 94 0.1529 0.1492 32 & 69 0.7438 0.7496 

8 & 93 0.1673 0.1575 33 & 68 0.7679 0.7683 

9 & 92 0.1833 0.1821 34 & 67 0.7913 0.7905 

10 & 91 0.2007 0.2088 35 & 66 0.8138 0.8169 

11 & 90 0.2195 0.2162 36 & 65 0.8354 0.8258 

12 & 89 0.2396 0.2360 37 & 64 0.8559 0.8473 

13 & 88 0.2606 0.2633 38 & 63 0.8754 0.8719 

14 & 87 0.2827 0.2804 39 & 62 0.8937 0.9147 

15 & 86 0.3055 0.2951 40 & 61 0.9107 0.9140 

16 & 85 0.3291 0.3337 41 & 60 0.9264 0.8892 

17 & 84 0.3534 0.3595 42 & 59 0.9408 0.9368 

18 & 83 0.3782 0.3814 43 & 58 0.9537 0.9611 

19 & 82 0.4035 0.4059 44 & 57 0.9651 0.9735 

20 & 81 0.4292 0.4173 45 & 56 0.9749 0.9787 

21 & 80 0.4553 0.4450 46 & 55 0.9832 0.9659 

22 & 79 0.4816 0.4844 47 & 54 0.9899 0.9855 

23 & 78 0.5082 0.5089 48 & 53 0.9949 0.9897 

24 & 77 0.5349 0.5319 49 & 52 0.9983 1.0000 

25 & 76 0.5617 0.5607 50 & 51 1.0000 0.9987 
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Fig.2. Element amplitude weights obtained by Taylor method with 6n   and APSO method for 

20N  

 

 
Fig.3. Optimized Sum Pattern by Taylor method with 6n  and APSO method for 20N  
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Fig. 4. Element amplitude weights obtained by Taylor method with 6n   and APSO method for 

40N  

 

 
Fig. 5. Optimized Sum Pattern by Taylor method with 6n  and APSO method for 40N  
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Fig. 6. Element amplitude weights obtained by Taylor method with 6n  and APSO method for 

60N  

 

 
Fig. 7. Optimized Sum Pattern by Taylor method with 6n   and APSO method for 60N  
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Fig. 8. Element amplitude weights obtained by Taylor method with 6n  and APSO method for 

80N  

 

 
Fig. 9. Optimized Sum Pattern by Taylor method with  6n  and APSO method for 80N  
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Fig. 10. Element amplitude weights obtained by Taylor method with 6n  and APSO method 

for 100N  

 

 
Fig.11. Optimized Sum Pattern by Taylor method with 6n  and APSO method for 100N  
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TABLE.6. First Null Beamwidth for Optimized Sum Pattern 

N  

Number of  

Elements 

 degFNBW  

Taylor method  

with 6n  

 degFNBW  

Accelerated Particle Swarm 

Optimization 

20 20.89 23.02 

40 10.44 11.03 

60 6.96 7.07 

80 5.21 5.24 

100 4.18 4.18 

 

 

 

TABLE.7. First Side Lobe Level for Optimized Sum Pattern 

N  

Number of  

Elements 

 dBSLLFirst  

Taylor method  

with 6n  

 dBSLLFirst  

Accelerated Particle Swarm 

Optimization 

20 -40.22 -43.09 

40 -40.18 -41.20 

60 -40.17 -40.61 

80 -40.17 -40.21 

100 -40.17 -40.17 
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TABLE.8. Last Side Lobe Level for Optimized Sum Pattern 

N  

Number of  

Elements 

 dBSLLLast  

Taylor method  

with 6n  

 dBSLLLast  

Accelerated Particle Swarm 

Optimization 

20 -41.08 -55.32 

40 -46.65 -57.65 

60 -50.09 -55.25 

80 -52.56 -55.83 

100 -54.48 -55.84 

 

Conclusion 

It is evident from the results on  nA , the resultant amplitude distribution is tapered in both 

the cases. But the patterns are entirely different. In Taylor’s method, the patterns have  1n  

number of sidelobes of equal height, equal sidelobes and the rest have exponential decay. But in 

Accelerated Particle Swarm Optimization, sidelobes are tapered. Taylor’s method is basically 

applicable to line sources. But it modified for discrete arrays by sampling at the location of the 

elements. Quantized levels are obtained. In the case of Accelerated Particle Swarm Optimization, 

discrete amplitude levels are directly determined and hence it is simple and realistic. 
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